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Abstract: We compute the electromagnetic form factor of a “pion” with mass mπ =

330MeV at low values of Q2 ≡ −q2, where q is the momentum transfer. The computations

are performed in a lattice simulation using an ensemble of the RBC/UKQCD collabora-

tion’s gauge configurations with Domain Wall Fermions and the Iwasaki gauge action with

an inverse lattice spacing of 1.73(3)GeV. In order to be able to reach low momentum

transfers we use partially twisted boundary conditions using the techniques we have devel-

oped and tested earlier. For the pion of mass 330MeV we find a charge radius given by

〈r2
π〉330 MeV = 0.354(31) fm2 which, using NLO SU(2) chiral perturbation theory, translates

to a value of 〈r2
π〉 = 0.418(31) fm2 for a physical pion, in agreement with the experimentally

determined result. We confirm that there is a significant reduction in computational cost

when using propagators computed from a single time-slice stochastic source compared to

using those with a point source; for mπ = 330MeV and volume (2.74 fm)3 we find the

reduction is approximately a factor of 12.
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1. Introduction

In this paper we compute the electromagnetic form factor of a “pion” with mass mπ =

330MeV at low values of Q2 ≡ −q2, where q is the momentum transfer. The computations

are performed in a lattice simulation using an ensemble of the RBC/UKQCD collabora-

tion’s gauge configurations with Domain Wall Fermions and the Iwasaki gauge action with

an inverse lattice spacing of 1.73(3)GeV (see section 3.2 for brief details of the simulation

and ref. [1] for a full discussion1). The action has good chiral and flavour symmetries and

as demonstrated in ref. [1] a mass of 330MeV is well within the regime where NLO SU(2)

chiral perturbation theory holds for other physical quantities, such as the meson masses,

decay constants and the kaon’s bag parameter.

In order to be able to reach low momentum transfers we employ partially twisted

boundary conditions using the techniques developed and tested in ref. [2]. Previous lat-

tice computations have used quarks satisfying periodic boundary conditions and therefore

obtained form factors at much larger values of Q2 (see however, the preliminary study

1In ref. [1] the pion mass corresponding to the bare quark mass used in the present study was found to

be 331(6) MeV, where the error is dominated by the uncertainty in the lattice spacing. In the text we refer

to this meson as having a mass of 330 MeV, while in the analysis we treat the fluctuations in the mass using

a jackknife procedure.
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with twisted boundary conditions presented by the European Twisted Mass Collabora-

tion (ETMC) [3]). For the pion with mπ = 330MeV we find for the charge radius,

〈r2
π〉330 MeV = 0.354(31) fm2 . We then use NLO chiral perturbation theory to obtain the

form factor and charge radius of a physical pion, finding

〈r2
π〉 = 0.418(31) fm2 , (1.1)

in agreement with the experimentally determined value.

The power of the technique is demonstrated in figure 2 where the data points are

obtained from our simulation. The dashed vertical line is the minimum value of Q2 (Q2
min)

which is accessible with periodic boundary conditions. From the figure we see that the form

factor can be obtained at arbitrarily small values of Q2 and also that the results obtained

with twisted boundary conditions join smoothly onto those obtained by performing the

Fourier sum in the conventional way (i.e. onto the data point on the dashed line). In

this paper we focus on the pion’s electromagnetic form factor, but we anticipate that

the technique used here will also have important applications to the calculation of other

flavour non-singlet form factors at arbitrary values of momentum transfer, such as those

which appear in Kℓ3 semileptonic decays [2].

For this calculation we use propagators generated from a single time-slice stochastic

source in addition to standard point source propagators. We compare the cost, obtaining

similar errors for the pion mass, the normalization constant of the vector current, ZV , and

the pion’s electromagnetic form factor at Q2
min, finding, for mπ = 330MeV and volume

(2.74 fm)3, a gain of approximately a factor of 12 in favour of the noise source propagators.

A gain was also found in the preliminary study presented by the ETMC collaboration in [3]

and in the recent publication by the UKQCD collaboration [4].

The plan for the remainder of this paper is as follows. In the next section we briefly

review the use of partially twisted boundary conditions to compute the form factor at

values of Q2 which are inaccessible with periodic boundary conditions [2]. The details

of the computation, the parameters of the simulation and the results for the form factor

for the 330MeV pion are presented in section 3. The use of noise source propagators to

evaluate the three point correlation functions from which the form factor is obtained is

briefly described in section 3.3 and a comparison of the relative cost of using point source

and noise source propagators to obtain results with the same statistical error is given in

section 3.5. The use of NLO chiral perturbation theory to obtain the form factor and

charge radius for a physical pion from that with mass 330MeV is described and performed

in section 4. Finally, in section 5 we present our conclusions.

2. Twisted boundary conditions and the form factor at small Q2

The electromagnetic form factor of the pion, fππ(q2), is defined by the matrix element

〈π+(p′)|Vµ|π+(p)〉 = (p + p′)µ fππ(q2), where q2 = −Q2 = (p − p′)2 (2.1)
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q1 q2

q3

Vµ

π(p) π(p′)

Figure 1: Sketch of the valence quark flow in the electromagnetic form factor of the pion. There

is a similar contribution in which the current is on the antiquark line and the spectator is a quark.

and Vµ = 2
3 ūγµu − 1

3 d̄γµd is the electromagnetic current. In a finite volume with periodic

boundary conditions for the quark fields, the accessible pion momenta are given by

p = (En, ~p~n) = (En, (2π/L)~n) and p′ = (En′ , ~p~n′) = (En′ , (2π/L)~n′) (2.2)

where ~n and ~n ′ are vectors of integers, L is the spatial extent of the lattice and En and En′

are the corresponding energies (E2
n = m2

π + (2π/L)2 |~n |2 and E2
n′ = m2

π + (2π/L)2 |~n ′ |2,
where mπ is the mass of the pion), so that q2 can only take the corresponding discrete values.

In particular the minimum non-zero value of Q2 is given by Q2
min = 2mπ(

√

m2
π + (2π/L)2−

mπ), which for the parameters of our simulation is about 0.15 GeV2. In this paper we

study the form factor at small Q2 (and in particular for Q2 ≪ 0.15GeV2), using the new

technique proposed in [2] which allows one to carry out lattice computations at arbitrarily

small values of Q2. We now briefly review this technique.

In order to reach small momentum transfers, we use partially twisted boundary condi-

tions [5, 6], combining gauge field configurations generated with sea quarks obeying periodic

boundary conditions with valence quarks with twisted boundary conditions [5 – 14]. The

valence quarks satisfy

q(xk + L) = eiθkq(xk), (k = 1, 2, 3) , (2.3)

where q represents one of the degenerate up or down quarks. We have demonstrated in

section 2.3 of ref. [2] that it is possible to introduce twisted boundary conditions indepen-

dently for the three valence quarks and antiquarks, i.e. ~θ1 for q1, ~θ2 for q2 and ~θ3 for q3

in figure 1. In our study it will be sufficient to set ~θ3 = 0 so that the spectator quark or

antiquark satisfies periodic boundary conditions. By varying ~θ1 and ~θ2 we are able to tune

the momenta of the initial and final pions continuously.

The dispersion relation for a meson with twisting angle ~θ takes the form [8, 10],

Eπ =

√

m2
π +

(

~p~n +
~θ

L

)2

, (2.4)

where mπ is the pion mass and ~p~n is the meson momentum induced by Fourier summation.

For the matrix element in (2.1) with the initial and the final meson carrying momenta

~p = ~p~n + ~θ/L and ~p ′ = ~p~n ′ + ~θ ′/L respectively (where ~θ = ~θ1 − ~θ3 and ~θ ′ = ~θ2 − ~θ3), the

momentum transfer between the initial and the final state meson is

q2 = (p − p ′)2 =
(

Eπ(~p ) − Eπ(~p ′ )
)2

−
(

(~p~n + ~θ/L) − (~p~n′ + ~θ ′/L)
)2

. (2.5)
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For mπL ≫ 1 the finite-volume corrections with partially twisted boundary conditions

decrease exponentially with mπL similarly to those with periodic boundary conditions [5].

In our simulation mπL ≈ 4.6 and we estimate the finite volume corrections in section 4.1.

3. The computation and results

In this section we present the details of the computation of the electromagnetic form factor

of a pion with mass mπ = 330MeV. In the first subsection we explain which correlation

functions are computed in order to be able to extract the form factor. The parameters

of the simulations are presented in subsection 3.2 and a brief introduction to the use of

noise-source propagators is given in subsection 3.3. In section 3.4 we present our results

for the form factor. Finally in section 3.5 we compare the computational cost of computing

correlation functions with point source and Z(2)-wall source propagators.

3.1 Correlation functions

In order to determine the form factors we compute two- and three-point correlation func-

tions. The two-point function is defined by

Cπ(t, ~p ) =
∑

~x

ei~p·~x〈Oπ(t, ~x)O†
π(0,~0) 〉 =

|Zπ|2
2Eπ(~p )

(

e−Eπ(~p )t + e−Eπ(~p )(T−t)
)

, (3.1)

where Oπ = d̄γ5u is a local pseudoscalar interpolating operator for the pion. We have

assumed that t and T − t (where T is the temporal extent of the lattice) are sufficiently

large for the correlation function to be dominated by the lightest state (i.e. the pion). The

constant Zπ is given by Zπ = 〈π |O†
π(0,~0) | 0 〉 . The three-point function is defined by

Cππ(t, tf , ~p, ~p ′) = ZV

∑

~xf ,~x

ei~p ′·(~xf−~x)ei~p·~x〈Oπ(tf , ~xf )V4(t, ~x)O†
π(0,~0) 〉

=
ZV |Zπ|2

4Eπ(~p )Eπ(~p ′)
〈π(~p ′) |V4(0) |π(~p ) 〉

×
{

θ(tf − t) e−Eπ(~p ) t−Eπ(~p ′)(tf−t) − θ(t − tf ) e−Eπ(~p )(T−t)−Eπ(~p ′)(t−tf )
}

, (3.2)

where V4 is the time component of the bare electromagnetic current and where, without

loss of generality, we have placed the source at the origin. Again we assume that all the

time intervals in (3.2) are sufficiently large for the lightest hadrons to give the dominant

contribution. As explained in the following paragraph, ZV is the normalization factor by

which the bare lattice current needs to be multiplied in order to obtain the physical current.

The normalization factor ZV can readily be obtained as follows. For illustration we

take 0 < t < tf < T/2, in which case ZV is defined by

ZV =
C̃π(tf ,~0)

CB
ππ(t, tf ,~0,~0 )

. (3.3)

In the numerator we use the function C̃π(t, ~p) = Cπ(t, ~p)− |Zπ| 2

2Eπ(~p) e−Eπ(~p)(T−t) where Zπ and

Eπ(~p) =
√

m2
π + ~p 2 are determined from fits to Cπ(t,~0 ). For tf < T/2 this proves to be an

– 4 –
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effective and numerically stable procedure for the subtraction of the contribution from the

backward propagating meson to Cπ(tf ,~0 ) in the numerator of (3.3). (For tf = T/2 it is

natural instead to use C̃π(t, ~p) = 1
2Cπ(t, ~p) in (3.3).) The superscript B in the denominator

indicates that we take the bare (unrenormalized) current in the three-point function.

In the following subsection we introduce the three datasets which we use for our anal-

ysis. For data set A we do not use twisted boundary conditions, setting ~p ′ = 0 and

determining the pion form factor from the ratio of correlation functions

2mπ
Cππ(t, tf , ~p,~0)

Cππ(t, tf ,~0,~0)

C̃π(t,~0)

C̃π(t, ~p)
−→ fππ(q2) (Eπ(~p) + mπ) . (3.4)

For data sets B and C we use

2
√

Eπ(~p )Eπ(~p ′)

√

Cππ(t, tf , ~p, ~p ′)Cππ(t, tf , ~p ′, ~p )

C̃π(tf , ~p ) C̃π(tf , ~p ′)
−→ fππ(q2)(Eπ(~p ) + Eπ(~p ′)) , (3.5)

(called ratio R1 in [2]). Both ratios approach a constant for sufficiently large time intervals.

3.2 Parameters of the simulation

The computations described in this paper were performed using the ensemble with light

quark mass amu = amd = 0.005 and strange quark mass ams = 0.04 from the set of

Nf = 2+1 flavour Domain Wall Fermion [15 – 17] configurations with (L/a)3×T/a×Ls =

243 × 64 × 16 which were jointly generated by the UKQCD/RBC collaborations using

the QCDOC computer [18 – 21]. The bulk of the correlation functions were evaluated on

the UK Research Councils’ HECToR Cray XT4 computer, with the set completed using

a University of Edinburgh BlueGene/L system as well as QCDOC. A detailed study of

the light-hadron spectrum and other hadronic quantities using these configurations has

recently been reported in ref. [1]. The gauge configurations were generated with the Iwasaki

gauge action [22, 23] at β = 2.13 corresponding to an inverse lattice spacing of a−1 =

1.729(28)GeV. The resulting pion mass is mπ ≈ 330MeV. In our numerical evaluations

we use the masses measured directly on our data sets, which can be determined from

the entries in table 2 and are fully consistent with the value reported in [1]. We use the

jackknife technique to estimate the statistical errors.

In the following we distinguish three sets of correlation functions as specified in table 1.

Set A was generated with point sources and sinks. We started the measurements for three

different source positions on trajectories 900, 905 and 910, respectively, measuring on every

20th trajectory in each case and averaging three consecutive measurements over the sources

into one bin. The initial pion carries momentum |~p | = 0, 2π
L or

√
22π

L and the final pion is

at rest. For this dataset we do not use twisted boundary conditions at all.

For data sets B and C we used a Z(2) × Z(2) noise wall source as explained in sec-

tion 3.3 and a point sink. For data set B we started the measurement chains for the eight

source positions specified in table 1 on trajectories 900, 905, 910, . . . , 935. Data set C is a

subset of set B which starts with four source positions on trajectories 900, 910, 920 and 930,

respectively. In each case we measured on every 40th trajectory and averaged the correla-

tion functions over the chains into bins of eight and four measurements, respectively. The

– 5 –
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set trajectories on tsrc=0 ∆ Nmeas tsrc

A 900 – 4460 20 537 0,16,32

B 1000 – 6840 40 1176 0, 54, 20, 14, 56, 26, 44, 34

C 1000 – 6440 40 548 0, 20, 56, 44

Table 1: Details of measurements A, B and C. The quoted range of trajectories is the one for

tsrc = 0 and ∆ is the separation in units of trajectories between subsequent measurements for each

source position tsrc.

correlation functions obtained using sets B and C were computed with ~p~n = ~p~n ′ = 0 and

the momenta of the initial and/or final pions were induced by twisting one of the pions’

valence quarks. For each measurement we applied the full twist along one of the spatial

directions. We changed this direction frequently as the measurements proceeded in order

to reduce the correlations. In the cases in which both the initial and the final pion carried

a twist, ~θ and ~θ ′ were chosen to be anti-parallel.

Based on a preliminary study of a subset of data set A, we determined the pion mass

amπ to have the central value 0.1907 and this guided us to choose twisting angles so

as to obtain a suitable range of momentum transfers. (After a detailed analysis by the

RBC/UKQCD collaboration on their data set of choice, called the FPQ data set in [1],

the mass was quoted as 0.1915(8).) For such a mass, as mentioned in section 2, the min-

imum value of Q2 which can be reached without using twisted boundary conditions is

(aQ)2min ≈ 0.051 (Q2
min ≈ 0.152GeV2). In order to reach smaller values of Q2 we introduce

three twisting angles 2.6832, 2.1285 and 1.6, and in table 2 we summarize the corresponding

kinematics.

3.3 Three point functions from noise source propagators

Lattice quark propagators are calculated by inverting the Dirac matrix D upon a matrix

valued source η,

SA,C(t, ~x; ti) ≡
∑

~y

∑

B

D−1
A,B(t, ~x; ti, ~y)ηB,C(~y, ti) , (3.6)

where A,B,C are spin-colour indices.

The hadronic form factor calculation is traditionally performed using point source

propagators [2], for which the Dirac matrix is inverted from a single site with ηB,C(~y) =

δ~y,~0 δB,C . However it has been shown [24, 25, 4] that the use of stochastic sources allows

for the calculation of meson propagators at a substantially reduced cost.

Following [24 – 26] we use source matrices with random elements from the set Z(2) for

both real and imaginary components on a single source spin-colour index (0), for all sites

~y on the source timeslice: ηB,0(~y, ti) ∈ Z(2)⊗Z(2). With sources of this form, the solution

S(~x, t; ti) requires only a single inversion rather than the 12 required for the point solution.

– 6 –
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data set |~p |L |~p ′|L aEπ(~p) aEπ(~p ′) (aQ)2 Q2 (GeV2) fππ(q2)

B 0 0 0.1910(4) 0.1910(4) 0 0 1

B 0 1.6 0.1910(4) 0.2023(4) 0.004 0.013 0.9804(15)

B 0 2.1285 0.1910(4) 0.2106(4) 0.007 0.022 0.9660(24)

B 0 2.6832 0.1910(4) 0.2213(4) 0.012 0.035 0.9477(36)

C 1.6 1.6 0.2023(6) 0.2023(6) 0.018 0.053 0.9189(75)

C 2.1285 1.6 0.2106(5) 0.2023(6) 0.024 0.072 0.8943(88)

C 2.1285 2.1285 0.2106(5) 0.2106(5) 0.031 0.094 0.867(10)

C 2.6832 1.6 0.2213(5) 0.2023(6) 0.031 0.094 0.864(11)

C 2.6832 2.1285 0.2213(5) 0.2106(5) 0.040 0.120 0.838(12)

C 2.6832 2.6832 0.2213(5) 0.2213(5) 0.050 0.150 0.802(15)

A 0 0 0.1912(7) 0.1912(7) 0 0 1

A 2π 0 0.3242(4) 0.1912(7) 0.051 0.152 0.809(14)

A
√

2 2π 0 0.4167(3) 0.1912(7) 0.086 0.258 0.711(26)

Table 2: Table of accessible values of Q2 = −q2 for the matrix element 〈π(p′)|V |π(p)〉 together

with the values of fππ(q2) . For data set B and C we also determined the correlation functions with

momenta |~p |L and |~p ′|L interchanged.

A set {ηj |j = 1, . . . , N} of these sources has the property that in the limit N → ∞

1

N

N
∑

j=0

ηj
A,0(~x, ti)η

† j
0,B(~y, ti) → δ~x,~y δA,B (3.7)

such that the pseudoscalar two-point correlator at zero momentum tends to the spatial

average of the point source solution [24, 25]

Cπ(t,~0) =

N
∑

j=0

∑

~x

tr
{

γ5Sj(~x, t; ti)γ
5
(

γ5Sj(~x, t; ti)γ
5
)†
}

→
∑

~x,~y

tr
{

γ5D−1(~x, t; ~y, ti)γ
5
(

γ5D−1(~x, t; ~y, ti)γ
5
)†
}

.

(3.8)

Although this explicitly projects to zero momentum at source, twisted boundary conditions

can be used to induce a non-vanishing meson momentum.

The properties of equation (3.7) are retained on average when the sources ηi reside

on different configurations such that the stochastic sum can be included in the ensemble

average. Therefore we require only a single stochastic source per configuration, giving an

overall factor of 12 cost reduction over the traditional method.

This technique can be extended simply to three-point correlators using standard se-

quential source methods

S′(ti; tf , ~pf ; t, ~x) =
∑

~xf

γ5

(

D−1(t, ~x; tf , ~xf )γ5S(tf , ~xf ; ti) e−i~pf ·~xf

)†
γ5 , (3.9)

– 7 –
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the solution of which is again non-zero only on a single source spin-colour index, thus

requiring only one extra inversion. The stochastic cancellation with the other source occurs

at the source timeslice ti as in (3.8).

3.4 Electromagnetic form factor of a pion with mπ = 330MeV

The main results of our computation, the form factor of a pion with mπ = 330MeV for a

range of low values of Q2 (obtained from all 3 data sets A, B and C) are presented in table 2

and plotted in figure 2. The quoted energies have been determined using the continuum

dispersion relation E(~p) =
√

m2
π + ~p 2 , where mπ is the measured pion mass. We also show

a zoom of the points at the lowest values of Q2. The vertical dashed line represents the

position of the lowest value of Q2 which can be reached with periodic boundary conditions

(Q2
min ≃ 0.15GeV2). From the figure it is satisfying to observe that at Q2

min the results

obtained with partially twisted boundary conditions join smoothly onto the data obtained

by performing a Fourier sum with momentum of magnitude 2π/L.

Our results from datasets B and C are well represented in the range 0 ≤ Q2 ≤ Q2
min

by the phenomenological pole formula

fππ
pole(q

2) =
1

1 − q2/M2
pole

. (3.10)

From the slope of the form factor at q2 = 0 we obtain the pion’s electromagnetic charge

radius, which is defined by

〈r2
π〉 ≡ 6

d

dq2
fππ(q2)

∣

∣

q2=0
. (3.11)

The best fit, which is shown as the blue curve in figure 2, gives 〈r2
π〉330MeV = 6/M2

pole =

0.382(37)(12)(15) fm2 = 0.382(42) fm2, where the first error is statistical and the second is

due to the uncertainty in the lattice spacing. The third error is to account for our lack of

a continuum extrapolation (as discussed in section 4.2 below). This result corresponds to

a pole mass of (aMpole)
2 = 0.202(20).

We compare our results to those of the UKQCD/QCDSF collaboration [27] who deter-

mined the pion form factor for a number of unphysical pion masses mπ ≥ 400MeV using

periodic boundary conditions. For each pion mass, they fit their data to the pole form

in (3.10) and hence determine the dependence of the pole mass Mpole on the pion mass.

Their results are well described by the ansatz,

M2(m2
π) = c0 + c1m

2
π , (3.12)

for which they determined c0 = 0.517(23)GeV2 and c1 = 0.647(30). Thus, for a pion of

mass 330MeV they predict 〈r2
π〉

UKQCD/QCDSF
330 MeV = 0.396(15) fm2. This result, which we also

illustrate in figure 2, is compatible with ours.

Although the pole formula (3.10) is a good representation of our data for the full

range Q2 ≤ Q2
min, we find that the points at the smallest values of Q2 tend to give a

slightly smaller central value for the charge radius. We will take as our best estimates

of 〈r2
π〉330 MeV the value obtained by applying SU(2) ChPT to the points at small Q2 as
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Figure 2: Results for the form factor fππ(q2) for a pion with mπ = 330 MeV. The blue dashed

curve is a pole fit to the data, while the red dashed curve shows the prediction for a 330 MeV pion

using results from the QCDSF/UKQCD collaboration [27]. The lower plot is a zoom into the very

low Q2 region.

explained in section 4 (we find 〈r2
π〉330 MeV = 0.354(31) fm2, see table 5). If we limit the

fits to the points at small Q2, the slope at Q2 = 0 (and hence the charge radius) is not
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data set maximum Q2 linear quadratic cubic pole

B 0.013 GeV2 0.354(28)(11) − − 0.361(29)(12)

B 0.022 GeV2 0.354(26)(11) 0.353(35)(11) − 0.364(27)(12)

B 0.035 GeV2 0.353(25)(11) 0.355(32)(11) 0.351(41)(11) 0.366(27)(12)

C 0.150 GeV2 0.332(28)(11) 0.387(44)(13) 0.406(56)(13) 0.382(37)(12)

Table 3: Results for 〈r2
π〉330MeV obtained by fitting to linear, quadratic or cubic functions of Q2

and by using the pole ansatz (3.10). In the first row we use only the single point at the lowest

value of Q2 (Q2 = 0.013 GeV2), in the second we use the two points at the lowest values of Q2

(Q2 = 0.013 GeV2 and Q2 = 0.022 GeV2) and in the third row we use the points at the lowest

three values of Q2 (Q2 = 0.013 GeV2, Q2 = 0.022 GeV2 and Q2 = 0.035 GeV2). The final row

corresponds to fits to all 9 points with Q2 ≤ Q2

min
. The two quoted errors are statistical and that

due to the uncertainty in the lattice spacing.

sensitive to the precise form of the fitting function. To illustrate this we present in table 3

the results obtained by fitting our results for the form factor at the lowest three values of

Q2 to the pole form (3.10) as well as to linear, quadratic and cubic polynomials. In the

final row of table 3 we present the value of 〈r2
π〉330 MeV obtained by applying the same fits

to all 9 points up to Q2
min.

3.5 Comparison of the cost of using point source and Z(2)-wall source propa-

gators

In this study we have used two different formulations of the source in the computation of

the quark propagators. The correlation functions on data set A have been computed from

point source propagators while the correlation functions on data sets B and C have been

computed using the noise source technique briefly described in section 3.3.

In this section we compare the relative computational cost of each approach in order to

achieve similar statistical errors for standard observables relevant for the phenomenology

of light mesons. In a very similar recent study [4] such a comparison was carried out for the

meson spectrum on a 163 × 32 lattice also using Nf = 2+1 Domain Wall fermions and the

Iwasaki gauge action. On this smaller volume the inverse lattice spacing was found to be

a−1 = 1.63(3)GeV and the study was performed using a pion with mass amπ ≈ 0.44. The

statistical error on the pseudoscalar and vector meson correlation functions was studied at

a fixed computational cost, i.e. at a fixed number of inversions of the Dirac matrix. It was

found that the stochastic (one-end) approach offers a factor of two reduction in the error and

a definite improvement in plateau quality over the traditional point source technique. Pre-

liminary results indicating similar improvements were also reported by ETMC in [3]. Here

we compare the costs for both approaches on a larger volume and for a much smaller pion

mass. In particular we perform the comparison for amπ, ZV and fππ(q2 = –Q2
min). Table 4

shows the results for each quantity for data sets A and C. In the second column we give the

number of inversions of the Dirac matrix that were carried out in each case. For one mea-

surement 12 inversions are necessary in the case of point source propagators while only one

inversion is necessary when using the noise source technique. On data set A we have 179×12

inversions times three for the number of sources. Our results for data sets A and C indicate
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data set inversions mπ ZV fππ(–Q2
min)

A 6444 0.1912(7) 0.7148(9) 0.809(14)

C 548 0.1910(6) 0.7136(8) 0.802(15)

Table 4: Comparison of cost and error on quantities relevant for light meson phenomenology.

that the same statistical error for mπ, ZV and fππ(–Q2
min) can be achieved with only about

1/12th of the computational cost when using the noise source technique. (This approxi-

mate gain of a factor of 12 found for this particular simulation should not be confused of

course with the 12 inversions performed for each configuration and source for data set A.)

We have also tried to study the error for point-source and noise-source correlators at

fixed cost, i.e. for a given number of inversions. The cost of the 1176 measurements which

we carried out with the noise source (data set B) corresponds to 1176/12 = 98 point source

measurements. While we could carry out reliable fits to the correlators on data set B this

was not the case for the sub-set of 98 measurements of data set A and no quantitative

comparison seems possible. This observation shows however that the statistical properties

of the correlation functions determined with noise-source propagators are better at the

same computational cost.

Very light chiral quarks will display near zero modes associated with topological objects

sampled in the ensemble. Intuitively, we might expect that point source propagators are

more susceptible to the corresponding fluctuations, particularly if the location of the source

is in the vicinity of such near zero modes. By contrast we expect such outliers to be averaged

away when using a volume source like the one considered in this work. Using this picture it

is not surprising that the gain observed in table 4 goes far beyond the one for the error of the

pion mass observed in [4]. In that work the pion mass was more than double the one used

here, thus the density of near zero modes was smaller. Furthermore the volume was (2/3)3

of the one used here, allowing for less volume averaging in the case of the noise source.

4. Electromagnetic form factor of a physical pion

Having determined the electromagnetic form factor of a pion with mπ = 330MeV we can

estimate what we would expect for that of a physical pion. The natural approach to perform

this extrapolation is chiral perturbation theory and in the following subsection we briefly

summarize the predictions of both the SU(2)L × SU(2)R and SU(3)L × SU(3)R theories.

4.1 Chiral perturbation theory for the pion electromagnetic form factor

The electromagnetic form factor of the pion has been studied extensively in both SU(2)L×
SU(2)R and SU(3)L × SU(3)R chiral perturbation theory (ChPT). NLO expressions ap-

pear in [28, 29] with extensions to NNLO in [30 – 32] and we now briefly summarise the

results at NLO. NLO calculations in quenched ChPT and partially-quenched ChPT ap-

pear in [33]. An NLO calculation with partially twisted boundary conditions in partially-

quenched ChPT exists in [34]; this is particularly useful to estimate the finite-volume effects.
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In our lattice simulation we use unitary points (each valence quark mass is matched by a sea

quark mass) and have small finite-volume effects (this will be justified below). We therefore

use the continuum (unquenched) QCD results to obtain the form factor of the physical pion.

Current conservation ensures that fππ(0) = 1. At NLO only one low energy constant

(LEC) is relevant for the form factor in both the SU(2) and SU(3) cases. This is denoted by

lr6(µ) for SU(2) and Lr
9(µ) for SU(3) where the superscript r stands for ‘renormalised’ and

we have explicitly indicated the dependence on the renormalization scale µ. The SU(2) [28]

and SU(3) [29] expressions for the form factor are:

fππ
SU(2),NLO(q2) = 1 +

1

f2

[

−2lr6 q2 + 4H̃(m2
π, q2, µ2)

]

(4.1)

fππ
SU(3),NLO(q2) = 1 +

1

f2
0

[

4Lr
9 q2 + 4H̃(m2

π, q2, µ2) + 2H̃(m2
K , q2, µ2)

]

(4.2)

where

H̃(m2, q2, µ2) =
m2H(q2/m2)

32π2
− q2

192π2
log

m2

µ2
(4.3)

and

H(x) ≡ −4

3
+

5

18
x − (x − 4)

6

√

x − 4

x
log

(

√

(x − 4)/x + 1
√

(x − 4)/x − 1

)

(4.4)

with H(x) = −x/6 + O(x3/2) for small x. For the space-like form factor considered in

this paper x = q2/m2 is negative and (x − 4)/x > 1 so that the logarithm in (4.4) is real

as expected. f and f0 are the pion decay constants in the SU(2) and SU(3) chiral limits

respectively (mu = md = 0 with ms at its physical value for SU(2) and mu = md = ms = 0

for SU(3)).

The NLO expressions for the charge radius are:

〈r2
π〉SU(2),NLO = −12lr6

f2
− 1

8π2f2

(

log
m2

π

µ2
+ 1
)

, (4.5)

〈r2
π〉SU(3),NLO =

24Lr
9

f2
0

− 1

8π2f2
0

(

log
m2

π

µ2
+ 1
)

− 1

16π2f2
0

(

log
m2

K

µ2
+ 1
)

. (4.6)

Comparing the expressions for the charge radius gives the relation between the SU(2) and

SU(3) NLO LEC’s [29]:

lr6(µ) = −2Lr
9(µ) +

1

192π2

(

log
m̄2

K

µ2
+ 1
)

, (4.7)

where m̄2
K is the kaon mass in the chiral limit for the light quarks. Using the rho-mass

for the renormalization scale, µ = mρ, the second term on the right hand side of this

relation is very small compared to the expected (power-counting) size of the LECs, so that

lr6(mρ) ≈ −2Lr
9(mρ). A word of caution should be added however. In deriving eq. (4.7)

from eqs. (4.5) and (4.6) we have set f0 = f which is correct at this order. In ref. [1] it was

found that f/f0 ≃ 1.23 and so we may expect significant corrections to (4.7). We follow

the approach of ref. [1] and use SU(2) ChPT to obtain our best results.
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The formulae above are obtained in infinite volume. Jiang and Tiburzi have used

partially quenched, partially twisted SU(2) chiral perturbation theory to evaluate the finite-

volume effects in the case where only one of the valence quarks is twisted [34]. This is the

case for our three points at the lowest values of Q2 (Q2 = 0.013GeV2, Q2 = 0.022GeV2,

and Q2 = 0.035GeV2), which are the points which we use to determine the charge radius

and the LECs lr6 and Lr
9 . They have also shown that the breaking of rotational invariance

due to the twist angle leads to its dynamical modification. This and the naive finite volume

corrections to the pion mass (see [5]) turn out to be small effects for our choice of simulation

parameters. In particular, from figures 3, 7 and 8 of [34] we see that for the pion mass

(mπ = 330MeV) and volume, (2.74 fm)3, used in our simulation, the modification of the

twist angle and the finite volume effects in 〈r2
π〉 and in 1 − fππ(q2) are less than 1%. The

twist angle explicitly enters the data analysis through the pion energy (cf. equation (3.4)

and (3.5)). We have checked that its renormalization leads to a change in the central

value of the charge radius by less than 1%. Since the remaining errors quoted for these

quantities for a pion with mπ = 330MeV are 7–8%, we feel confident in neglecting the

finite volume effects in the remainder of this analysis. In order to extend the calculations

of ref. [34] to the case in which more than one of the valence quarks satisfies twisted

boundary conditions we would have to perform SU(3) ChPT calculations in the partially

quenched, partially twisted theory [2]; this is left for a future publication. We note that,

while chiral perturbation theory provides a reasonable estimate of the volume dependence,

a more reliable calculation of finite volume effects would require a comparison of the results

obtained at different volumes keeping the remaining physical parameters the same.

The recent QCDSF/UKQCD two-flavour results for the pion charge radius [27] include

a larger systematic error, a downwards shift of 6–7%, arising from finite volume effects. The

estimate of these effects in [27] is obtained using a very different approach to the one we use.

QCDSF/UKQCD fit form factor data from a range of lattice ensembles, each with a range

of pion masses, to a pole form, eq. (3.10), with the pole mass given by eq. (3.12). A chirally-

extrapolated value for the pole mass translates directly to the chirally-extrapolated result

for the charge radius. Finite volume corrections are modelled by replacing the expression

for the pole mass with

M2(m2
π) = c0 + c1m

2
π + c2e

−mπL, (4.8)

where L is the spatial extent of the lattice. For this second form, additional lattices with

varying volumes are added to the fit, but the results for the lightest pion, 400MeV, are

omitted. A chiral and infinite volume extrapolation now yields a new physical charge

radius, with the difference quoted as a finite volume systematic error.

We end this subsection with a discussion of another source of uncertainty which the

use of chiral perturbation theory can help to estimate. The mass of the (sea) strange quark

(ms) in the simulation is different from the physical one (ams = 0.04 in the simulation

compared to the physical value 0.0343(16) found in ref. [1]). In SU(3) ChPT we use the

mass of the kaon as found from our simulation and hence obtain the value of the LEC Lr
9

without the need for further corrections. The LEC lr6 of SU(2) ChPT on the other hand

depends on the mass of the strange quark and, since this is our preferred approach, we
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need to understand the amount by which lr6 could be shifted due to the different value of

ms. Using eq. (4.7) and the value of the mass from [1] to estimate m̄K , we find that the

shift in lr6(mρ) is about 0.9% and is hence negligible compared even to the 9% statistical

error (11% total error) found in section 4.2 below (this is also the case if we use eqs. (4.5)

and (4.6) without setting f = f0, when the relative error grows to 1.3%). For the remainder

of the analysis we therefore neglect this uncertainty.

4.2 Results for the physical pion

ChPT describes the behaviour of the form factor as a function of both the momentum

transfer and the quark masses, providing that these are sufficiently small. We fit our data

at fixed quark masses (i.e. for the pion with mass 330 MeV) as a function of q2 to the NLO

formulae for both SU(2) and SU(3) ChPT, eqs. (4.1) and (4.2) respectively. In these fits

we use the results af = 0.0665(47) and af0 = 0.0541(40) which were determined by the

RBC/UKQCD collaboration in [1] (in our normalization the decay constant of the physical

pion is fπ± = 130.7(4)MeV). In this way we obtain the LECs lr6 and Lr
9. Having obtained

the LECs in this way, we then use the ChPT formulae given above to determine the form

factor (and hence the charge radius) of a physical pion (mπ = 139.57MeV [35]).

In ref. [1] it was found that whereas both SU(2) and SU(3) ChPT fit the data for

the pion masses and decay constants, in the SU(3) case the NLO corrections were very

large, particularly for the decay constant, casting doubt on the convergence of the chiral

expansion. For this reason, in ref. [1] the main results were obtained using SU(2) ChPT and

the above result for the decay constant in the chiral limit, af , includes both the statistical

and systematic errors. The corresponding result for the decay constant in the SU(3) limit,

af0, on the other hand, includes only the statistical error.

The results of the chiral extrapolation are summarized in tables 5 and 6 for the SU(2)

and SU(3) cases respectively. In both tables the first column corresponds to the result of

fitting only to the data point at our lowest value of Q2 (Q2 = 0.013GeV2) to determine

the single LEC (lr6(mρ) or Lr
9(mρ)) and the charge radius. In the second column we use

the data points at the lowest two values of Q2 (Q2 = 0.013GeV2 and 0.022GeV2) and in

the final column we fit the data for the lowest three values of Q2. The results in the three

columns do not show any dependence on the chosen fit range at these small values of Q2 .

Our simulation was performed at a single value of the lattice spacing and we cannot

extrapolate our results to the continuum limit. However, our action has O(a2) discretization

errors and we follow [1] by assigning a systematic uncertainty of 4% to measured quantities,

representing an estimate of (aΛQCD)2 for our lattice spacing. Thus we assign a 4% error

from this source to our values for 1 − fππ(q2). This relative error is propagated to our

results for the LECs and 〈r2
π〉, where it appears as the last error quoted in tables 5 and 6.

Based on the experience of ref. [1] and because we only know the statistical error for

af0, we take for our best estimate the result from the fit to the SU(2)L×SU(2)R expression

at NLO including the three data points at Q2 = 0.013, 0.022 and 0.035GeV2,

lr6(mρ) = −0.0093(10), 〈r2
π〉330 MeV = 0.354(31), 〈r2

π〉 = 0.418(31) , (4.9)
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Q2
max [ GeV2] 0.013 0.022 0.035

100 lr6(mρ) −0.932(79)(03)(63)(40) −0.933(73)(03)(63)(40) −0.932(71)(03)(63)(40)

〈r2
π〉330 MeV [ fm2] 0.354(28)(12)(00)(14) 0.354(26)(12)(00)(14) 0.354(25)(12)(00)(14)

〈r2
π〉 [ fm2] 0.418(28)(12)(04)(14) 0.419(26)(12)(04)(14) 0.418(25)(12)(04)(14)

Table 5: Results from the SU(2) ChPT fits. The errors are statistical, uncertainty in the lattice

spacing, uncertainty in af and uncertainty from the continuum extrapolation respectively. The

three columns correspond to using the data at the lowest, the lowest two and the lowest three non-

zero values of Q2 respectively, while Q2
max denotes the largest value of Q2 used in the determination.

Q2
max [ GeV2] 0.013 0.022 0.035

100Lr
9(mρ) 0.307(26)(03)(49)(13) 0.308(24)(03)(49)(13) 0.308(23)(03)(49)(13)

〈r2
π〉330 MeV [ fm2] 0.354(28)(12)(00)(14) 0.355(26)(12)(00)(14) 0.355(25)(12)(00)(14)

〈r2
π〉 [ fm2] 0.460(28)(12)(16)(14) 0.460(26)(12)(16)(14) 0.460(25)(12)(16)(14)

Table 6: Results from the SU(3) ChPT fits. The errors are statistical, uncertainty in the lattice

spacing, (statistical) uncertainty in af0 and uncertainty from the continuum extrapolation respec-

tively. The three columns correspond to using the data at the lowest, the lowest two and the lowest

three non-zero values of Q2 respectively, while Q2
max

denotes the largest value of Q2 used in the

determination.

where 〈rπ2〉 is the physical value of the square of the charge radius. Comparison of our

values for lr6(mρ) and Lr
9(mρ) in tables 5 and 6 with the SU(2)–SU(3) conversion formula

in (4.7) reveals deviations up to around 50%. By this we mean that the LECs obtained

directly from the fit differ from the values extracted using the conversion formula with

the other LEC as input. Large SU(3) NLO corrections were seen in the analysis in [1],

and indeed the discrepancy can be reduced very significantly by using eqs. (4.5) and (4.6)

without setting f = f0.

In table 7 we compare our result for the charge radius to the one determined from

experiment and to other recent computations. Note that the previous lattice results were

obtained with 2 flavours of sea quarks (Nf = 2) and using periodic boundary conditions

so that the values of Q2 are much larger than in this paper.

In figure 3 we plot our lattice data for the 330 MeV pion and the form factor of a

physical pion obtained from this data using SU(2) ChPT. The experimental data from

ref. [39] is also plotted together with the ChPT formula with the PDG world average for

the charge radius (see also table 7).

5. Summary and conclusions

In this paper we have successfully used partially twisted boundary conditions to compute

the electromagnetic form factor of a pion with mass 330MeV at low values of Q2. We use

our results to compute the LEC lr6 of NLO SU(2) and then to determine the physical form
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collaboration technique 〈r2
π〉[ fm2]

PDG [35] 0.452(11)

Nam, Kim [36] instanton vacuum, large Nc 0.455

QCDSF/UKQCD [27] Nf = 2 Clover 0.441(19)

JLQCD [37] Nf = 2 Clover 0.396(10)

JLQCD [38] Nf = 2 Overlap 0.388(15)

RBC/UKQCD this work Nf = 2 + 1 Domain Wall 0.418(31)

0.35 0.4 0.45 0.5

Table 7: Previous determinations (excluding quenched lattice results) of the pion’s charge radius

together with the value from the Particle data Group.
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SU(2) NLO lattice-fit; mπ = 330 MeV

SU(2) NLO lattice-fit; mπ = 139.57 MeV
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6
〈r2

π
〉PDGQ2

Figure 3: Comparison of experimental results (magenta diamonds) for the form factor fππ(q2),

lattice results at mπ = 330 MeV (grey triangles and dash-dotted grey line) and the extrapolation

of the lattice results to the physical point (blue solid line) using NLO SU(2) chiral perturbation

theory. In addition we also represent the PDG world average for the charge radius using the black

dashed line.

factor and charge radius, see (1.1). We are able to calculate the form factor for values of Q2

below the minimum value accessible with periodic boundary conditions, see figure 2. The

results which we obtain are in good agreement with the experimentally determined form

factor which gives us further confidence in the use of chiral perturbation theory in the mass

range below 330MeV (indeed the value of f which we use in the chiral extrapolation was

obtained with pion masses up to 420MeV in ref. [1]). The techniques used in this paper

can also be applied to other flavour non-singlet form factors of mesons and baryons and

we strongly advocate the use of partially twisted boundary conditions in order to improve

significantly the momentum resolution in lattice phenomenology.

One limitation of the current calculation of the pion’s electromagnetic form factor is
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that it was performed at a single value of the lattice spacing, albeit with an action for which

the discretization errors are of O(a2) and with good chiral and flavour properties. We are

currently generating a set of configurations with the same action on a 323 lattice with a

finer lattice spacing and will repeat the present calculation with this ensemble. Although

the mass and momentum transfers are sufficiently small to expect that NLO SU(2) ChPT

is a good approximation, it would be nice to be able to check this explicitly. It is not clear

whether in practice a full NNLO calculation can be performed with sufficient precision (i.e.

whether the NNLO LECs will be determined sufficiently accurately) but, as it becomes

possible to reach lighter quark masses, in the future we will be able to check the stability

of the results. The finite-volume corrections for our mass and volume are small [34] and

with our precision can be neglected.

In our calculation, we confirm the significant reduction in computational cost when

computing three-point correlation functions using propagators computed from a single

time-slice stochastic source compared to using point-source propagators.
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